Carilahpersamaan garis yang menghubungkan titik M dan titik api parabola y2=20x, jika absis titik M adalah 7.3. Tentukan nilai k sehingga persamaan y=kx+2 menyinggung parabola y2=4x.MAT. 10. Irisan Kerucut 514. Diketahui puncak parabola adalah A(6,-3) dan persamaan garis arahnya 3x-5y+1=0, tentukan titik api dari parabola.e. Padahal30 persen tubuh kita mengandung protein dan 30 persen darinya adalah jaringan kolagen. Banyak jaringan dan fungsi organ yang menurun seiring dengan menurunnya produksi kolagen. "Kita selalu cari cara untuk melakukan perawatan bawah mata, tanpa operasi. Karena bawah mata itu tidak bisa bisa pakai botox. Tentukanapakah pasangan garis berikut sejajar atau saling tegak lurus? a. garis a yang melalui A(7,-3) dan B(11,3) garis b yang melalui C(-9,0) dan D(-5,6) b. garis m yang melalui P(3,5) dan Q(0,0) garis n yang melalui R(0,0) garis n yang melalui R(0,0) dan S(-5,3). Jawaban a. Garis a yang melalui A (7 , -3) dan B (11 , 3) mₐ = (y₂ SoalUji Kompetensi Materi 7 Garis dan Sudut. Pada materi 7 memuat materi mengenai hubungan antara dua garis, serta besar dan jenis sudut; sifat-sifat sudut yang terbentuk jika dua garis berpotongan atau dua garis sejajar berpotongan dengan garis lain; serta cara melukis dan membagi sudut. Suatu sudut dapat terbentuk dari suatu sinar yang . Kubus adalah salah satu bentuk bangun ruang bangun datar yang cukup mudah dikenali. Di mana terdapat 6 buah sisi berbentuk persegi dan 12 rusuk berupa ruas garis. Setiap kubus terdapat pasangan garis saling sejajar, berpotongan, dan bersilangan. Setiap satu bidang pada kubus sejajar dengan satu bidang lain sehingga ada tiga pasang bidang yang saling sejajar. Kubus memiliki 6 sisi yang memiliki bentuk sama berupa persegi. Banyaknya rusuk dalam kubus berjumlah 12 yang panjangnya sama. Bangun ruang berbentuk kubus memiliki 2 macam diagonal yaitu diagonal sisi dan diagonal ruang. Banyak diagonal sisi kubus sama dengan dua kali sisi kubus yaitu 12 diagonal sisi. Sedangkan banyak diagonal ruang kubus sama dengan 4 diagonal ruang. Gambaran bangun ruang berbentuk kubus beserta keterangan bangian-bagiannya diberikan seperti gambar berikut. Baca Juga Rumus Volume Kubus Mana saja pasangan garis saling sejajar pada kubus ABCD-EFGH? Apa saja pasangan garis yang saling berpotongan dan bersilangan? Sobat idcshool dapat mencari tahu jawaban mana saja garis saling sejajar, berpotongan, dan bersilangan pada kubus ABCD-EFGH melalui ulasan di bawah. Daftar isi Pasangan Garis Saling Sejajar, Berpotongan, dan BersilanganDaftar Pasangan Garis Saling Sejajar, Berpotongan, dan BersilanganContoh Soal dan PembahasanContoh 1 – Menentukan Kedudukan Suatu Garis Terhadap Garis LainContoh 2 – Soal Pasangan Garis Saling Sejajar, Berpotongan, dan BersilanganContoh 3 – Soal Pasangan Garis Saling Sejajar, Berpotongan, dan BersilanganContoh 4 – Soal Pasangan Garis Saling Sejajar, Berpotongan, dan Bersilangan Sebelumnya sobat idschool perlu mengetahui bagaimana dua garis dikatakan saling sejajar, berpotongan, dan bersilangan. Dari definisi tersebut, selanjutnya sobat idschool dapat menentukan pasangan garis saling sejajar, berpotongan, dan bersilangan pada suatu kubus. Dua buah garis dikatakan saling sejajar jika kedua garis tidak memiliki titik potong. Untuk dua garis saling berpotongan terdapat pada dua buah garis yang memiliki satu titik potong. Biasanya, dua buah garis yang saling sejajar dan berpotongan terdapat pada bidang datar yang sama. Contoh pasangan garis yang saling sejajar pada kubus adalah AB dan EF. Sedangkan contoh pasangan garis yang saling berpotongan adalah DC dam GC. Sedangkan dua buah ruas garis dikatakan saling bersilangan jika garis-garis tersebut terletak di bidang yang berbeda. Dua garis yang saling bersilangan tidak memiliki titik potong. Selain pasangan garis saling sejajar, berpotongan, dan bersilangan terdapat juga garis yang saling berimpit. Dua garis yang saling berimpit terletak pada satu garis lurus sehingga hanya terlihat sebagai satu garis. Baca Juga Materi Pengantar Dimensi Tiga Bangun Ruang Daftar Pasangan Garis Saling Sejajar, Berpotongan, dan Bersilangan Perhatikan kubus dengan 12 rusuk yaitu AB, BC, CD, DA, AE, BF, CG, DH, EF, FG, GH, dan HE berikut. Pada kubus ABCD-EFGH di atas terdapat pasangan garis saling sejajar, berpotongan, dan bersilangan. Banyak pasangan garis saling sejajar, berpotongan, dan bersilangan berturut-turut adalah 18, 24, dan 24. Daftar pasangan garis saling sejajar, berpotongan, dan bersilangan terdapat pada daftar berikut. Daftar pasangan garis saling sejajar pada kubus ABCD-EFGH AB // CD; AB // GH; AB // EF; CD // EF; CD // GH; GH // EF; AE // BF; AE // CG; AE // DH; BF // CG; BF // DH; CG // DH; AD // BC; AD // FG; AD // EH; BC // FG; BC // EH; FG // EH Daftar pasangan garis saling berpotongan kubus ABCD-EFGH AD dan BC; AD dan CD; EF dan FG; EH dan GH; AB dan AD; BC dan CD; EF dan EH; EH dan GH; AB dan BF; AE dan EF; BF dan EF; AB dan AE; BC dan CG; BC dan BF; CG dan FG; BF dan FG; CD dan CG; CD dan DH; CG dan GH; DH dan BH; AD dan DH; AE dan EH; AD dan AE; DH dan EH Daftar pasangan garis saling bersilangan pada kubus ABCD-EFGH AB dan FG; AB dan EH; AB dan CG; AB dan DH; AD dan EF; AD dan GH; AD dan BF; AD dan CG; AE dan BC; AE dan FG; AE dan CD; AE dan BH; BC dan DH; BC dan EF; BC dan GH; BF dan EH; BF dan CD; BF dan GH; CG dan EG; CG dan EH; CD dan FG; CD dan EH; DH dan EF; DH dan FG Baca Juga [Dimensi Tiga] Jarak Garis ke Bidang pada Bangun Ruang Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasan bagaimana pasangan garis saling sejajar, berpotongan, dan bersilangan pada kubus ABCD-EFGH. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Menentukan Kedudukan Suatu Garis Terhadap Garis Lain Contoh 2 – Soal Pasangan Garis Saling Sejajar, Berpotongan, dan Bersilangan Perhatikan gambar kubus di bawah! Pasangan garis yang saling bersilangan adalah ….A. AB dan GHB. BC dan CDC. AE dan CGD. DH dan EF Pembahasan Dua buah garis dikatakan bersilangan jika kedua garis terletak pada bidang yang berbeda dan tidak memiliki titik potong. Hubungan 2 garis yang terdapat pada pilihan jawaban adalah sebagai berikut. AB dan GH sejajar BC dan CD berpotongan AE dan CG sejajar DH dan EF bersilangan Jadi, pasangan garis yang saling bersilangan adalah DH dan EF. Jawaban D Baca Juga Rumus 4 Macam Bangun Ruang Sisi Datar dan Karakteristiknya Contoh 3 – Soal Pasangan Garis Saling Sejajar, Berpotongan, dan Bersilangan Pembahasan Dua buah garis bersilangan terdapat pada 2 garis yang terletak pada bidang yang berbeda dan tidak memiliki titik potong. Garis pertama bersilangan tegak lurus dengan garis kedua jika terdapat pada garis ketiga yang sejajar garis pertama dan tegak lurus garis kedua. Sehingga, garis yang bersilangan tegak luru adalah BD dan AE. Jadi, pasangan garis yang saling bersilangan tegak lurus adalah BD dengan AE. Jawaban D Contoh 4 – Soal Pasangan Garis Saling Sejajar, Berpotongan, dan Bersilangan Perhatikan gambar kubus berikut! Pasangan garis dan bidang yang sejajar adalah ….A. AB dan BCGFB. AD dan EFGHC. CG dan ABCDD. EH dan CDHG Pembahasan Garis dan bidang dikatakan sejajar jika garis berada pada suatu bidang yang sejajar dengan bidang tersebut. Ruas garis AD berada pada bidang ABCD, di mana bidang ABCD sejajar EFGH. Sehingga, hubungan garis AD dan EFGH adalah sejajar. Jadi, pasangan garis dan bidang yang sejajar adalah AD dan EFGH. Jawaban B Demikianlah tadi ulasan pasangan garis saling sejajar, berpotongan, dan bersilangan pada kubus ABCDEFGH. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat! Baca Juga Materi Jarak pada Dimensi Tiga Hai Quipperian, tahukah kamu jika hampir semua objek yang kamu lihat itu terdiri dari garis? Misalnya, huruf, gambar konstruksi, corak seni, papan tulis, desain baju, desain rumah, dan masih banyak lainnya. Tanpa adanya garis, tentu tidak akan terbentuk objek-objek tersebut. Memangnya, apa sih yang dimaksud garis? Untuk tahu pengertian garis, yuk simak ulasan berikut ini. Pengertian Garis Garis adalah unsur pembentuk bidang atau bangun yang terdiri dari kumpulan titik-titik. Untuk membuktikannya, cobalah kamu buat titik-titik yang saling terhubung. Semakin banyak titik yang saling terhubung, pasti semakin panjang garis yang akan terbentuk. Oleh karena hanya memiliki satu dimensi saja yaitu panjang, maka garis biasa disebut sebagai unsur geometri satu dimensi. Penulisan suatu garis bisa dilambangkan dengan huruf kecil, seperti k, m, n, dan sebagainya. Sifat-Sifat Garis Adapun sifat-sifat garis adalah sebagai berikut. Tidak memiliki pangkal dan ujung. Bisa diperpanjang di kedua sisinya, sampai tak terbatas. Biasanya dinyatakan dengan huruf kecil, kecuali untuk menjelaskan bagian-bagian garis bisa berupa kombinasi huruf kapital. Bagian-Bagian Garis Sebagai salah satu unsur geometri, garis memiliki bagian-bagian tertentu seperti berikut. Sinar Garis Sinar garis adalah garis yang memiliki pangkal, namun tidak memiliki ujung. Biasanya, sinar garis digambarkan seperti anak panah dengan tanda pangkal berupa lingkaran kecil. Perhatikan gambar berikut. Sinar garis di atas bisa dituliskan sebagai OP. Bagian pangkal tidak bisa diperpanjang lagi. Sementara bagian ujung masih bisa diperpanjang hingga tak terbatas. Ruas Garis Ruas garis adalah bagian garis yang memiliki pangkal dan ujung. Ruas garis biasa diberi tanda lingkaran kecil di kedua sisinya. Perhatikan gambar berikut. Gambar di atas merupakan contoh ruas garis PQ. Pada ruas garis, bagian pangkal dan ujung sudah tidak bisa diperpanjang lagi. Macam-Macam Garis Berdasarkan bentuknya, garis dibagi menjadi beberapa macam, yaitu sebagai berikut. Garis Lurus Garis lurus adalah garis yang bentuknya lurus. Cara membuat garis lurus itu mudah, ambillah penggaris lalu tarik garis yang searah dengan penggaris. Garis lurus dibagi menjadi dua, yaitu garis lurus horizontal dan garis lurus vertikal. Garis lurus horizontal adalah garis lurus yang arahnya mendatar. Sementara garis lurus vertikal adalah garis lurus yang arahnya tegak. Garis lurus ini biasa digunakan untuk menggambarkan bentuk geometri seperti kubus, balok, persegi, segitiga, dan lainnya. Adapun contoh garis lurus adalah sebagai berikut. Garis Putus-Putus Garis putus-putus adalah garis yang dibuat seperti patah-patah dan tidak terhubung antar elemen garisnya. Garis putus-putus ini biasa digunakan untuk menyatakan daerah penyelesaian pada kasus pertidaksamaan. Perhatikan contoh garis putus-putus berikut. Terlihat kan jika elemen garisnya tidak saling terhubung? Garis Lengkung Garis lengkung adalah garis yang bentuknya melengkung. Contoh garis lengkung bisa kamu lihat pada kurva persamaan linear dua variabel. Garis lengkung ini biasa digunakan untuk menggambarkan lingkaran, bola, kurva persamaan linear, ilustrasi ombak air laut, menggambar kubah, dan masih banyak lainnya. Adapun contoh garis lengkung adalah sebagai berikut. Garis Zig-Zag Garis zig-zag adalah garis yang berbentuk menyerupai segitiga tanpa alas yang saling terhubung satu sama lain. Garis zig-zag biasa digunakan untuk menyatakan besaran sudut pada suatu bangun datar yang dibatasi oleh beberapa garis. Adapun contoh garis zig-zag adalah sebagai berikut. Bentuk di atas hanya penggambaran sederhana dari garis zig-zag, ya. Dalam penerapannya, garis ini bisa dimodifikasi. Hubungan Antargaris Hubungan antargaris ditinjau dari posisi garis tersebut terhadap garis yang lain. Adapun hubungan antargaris adalah sebagai berikut. Garis Sejajar Garis sejajar adalah hubungan antara dua buah garis yang memiliki kemiringan atau gradien yang sama dan tidak memiliki satupun titik persekutuan. Itulah sebabnya dua garis dikatakan sejajar jika keduanya tidak pernah berpotongan di suatu titik manapun. Perhatikan contoh berikut. Dari gambar di atas, terlihat bahwa garis m sejajar dengan garis n, sehingga keduanya tidak memiliki satupun titik persekutuan. Jika kedua sisi garis m dan garis n ditarik sampai tak hingga, ujung atau pangkal keduanya tidak akan pernah bertemu atau berpotongan. Secara matematis, penulisan garis yang saling sejajar diberi tanda “//”, misalnya m // n. Garis Berpotongan Garis berpotongan adalah garis yang memiliki satu titik persekutuan. Artinya, kedua garis bertemu di titik tertentu yang biasa disebut titik potong. Jika perpotongan kedua garis membentuk sudut siku-siku 90o, maka kedua garis dikatakan saling tegak lurus. Perhatikan gambar berikut. Dari gambar di atas, terlihat kan jika garis yang saling tegak lurus membentuk sudut siku-siku? Garis Berimpit Garis berimpit adalah garis yang memiliki kemiringan yang sama dan berada pada posisi yang sama pula. Dua garis yang saling berimpit seolah-olah hanya terlihat satu garis saja. Dari gambar di atas, garis m berimpit dengan garis n, sehingga seolah-olah hanya terlihat satu garis saja. Contoh Soal Untuk mengasah kemampuanmu tentang pengertian garis, yuk simak contoh soal berikut. Contoh Soal 1 Perhatikan kumpulan garis berikut. Tentukan hubungan yang sesuai antara garis m, garis n, garis o, garis p, dan garis q! Pembahasan Untuk menentukan hubungan antara kelima garis, kamu harus meninjaunya satu persatu seperti berikut. Garis m Garis m dan garis n saling berpotongan. Garis m dan garis o saling berpotongan. Garis m dan garis p saling sejajar. Garis m dan garis q saling berpotongan. Garis n Garis n dan garis o saling sejajar. Garis n dan garis p saling berpotongan. Garis n dan garis q saling tegak lurus. Garis o Garis o dan garis p saling berpotongan. Garis o dan garis q saling tegak lurus. Garis p Garis p dan garis q saling tegak lurus. Contoh Soal 2 Analisisnya hubungan antargaris pada bangun jajar genjang! Pembahasan Perhatikan gambar jajar genjang berikut. Dari gambar di atas, apakah Quipperian sudah tahu hubungan antargaris penyusun jajar genjang? Yuk, kita bahas bersama. Garis AB dan garis CD saling sejajar karena kedua garis tidak memiliki satupun titik persekutuan. Untuk membuktikannya, cobalah kamu tarik garis AB dan CD memanjang, ya. Apakah kedua garis akan bertemu? Garis AC dan garis BD saling sejajar karena kedua garis tidak memiliki satupun titik persekutuan. Garis AB dan garis AC saling berpotongan karena memiliki satu titik persekutuan. Garis AC dan garis CD saling berpotongan karena memiliki satu titik persekutuan. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper! Kedudukan Dua Garis Dua garis sejajar Pernahkah kalian memerhatikan rel atau lintasan kereta api? Apabila kita perhatikan lintasan kereta api tersebut, jarak antara dua rel akan selalu tetap sama dan tidak pernah saling berpotongan antara satu dengan lainnya. Apa yang akan terjadi jika jaraknya berubah? Apakah kedua rel itu akan berpotongan? Berdasarkan gambaran tersebut, selanjutnya apabila dua buah rel kereta api kita anggap sebagai dua buah garis, maka dapat kita gambarkan seperti Gambar di bawah ini. Garis m dan garis n di atas, jika diperpanjang sampai tak berhingga maka kedua garis tidak akan pernah berpotongan. Keadaan seperti ini dikatakan kedua garis sejajar. Dua garis sejajar dinotasikan dengan “//”. Dua garis atau lebih dikatakan sejajar apabila garis-garis tersebut terletak pada satu bidang datardan tidak akan pernah bertemu atau berpotongan jika garis tersebut diperpanjang sampai tak berhingga. Dua garis berpotongan Agar kalian memahami pengertian garis berpotongan, perhatikan Gambar di bawah ini. Gambar tersebut menunjukkan gambar kubus Amatilah garis AB dan garis BC. Tampak bahwa garis AB dan BC berpotongan di titik B dimana keduanya terletak pada bidang ABCD. Dalam hal ini garis AB dan BC dikatakan saling berpotongan. Dua garis dikatakan saling berpotongan apabila garis tersebut terletak pada satu bidang datar dan mempunyai satu titik potong. Dua garis berimpit Pada Gambar di atas menunjukkan garis ABdan garis CD yang saling menutupi, sehingga hanya terlihat sebagai satu garis lurus saja. Dalam hal ini dikatakan kedudukan masing-masing garis AB dan CD terletak pada satu garis lurus. Kedudukan garis yang demikian dinamakan pasangan garis yang berimpit. Dua garis dikatakan saling berimpit apabila garis tersebut terletak pada satu garis lurus, sehingga hanya terlihat sebagai satu garis lurus saja. Dua garis bersilangan Sediakan sebuah penghapus papan tulis yang terdapat di kelasmu. Apabila penghapus tadi kita anggap sebagai bentuk sebuah balok, maka dapat digambar seperti pada Gambar di bawah ini. Gambar di atas menunjukkan sebuah balok Perhatikan garis AC dan garis HF. Tampak bahwa kedua garis tersebut tidak terletak pada satu bidang datar. Garis AC terletak pada bidang ABCD, sedangkan garis HF terletak pada bidang EFGH. Selanjutnya apabila kedua garis tersebut, masing-masing diperpanjang, maka kedua garis tidak akan pernah bertemu. Dengan kata lain, kedua garis itu tidak mempunyai titik potong. Kedudukan garis yang demikian dinamakan pasangan garis yang saling bersilangan. Dua garis dikatakan bersilangan apabila garis-garis tersebut tidak terletak pada satu bidang datar dan tidak akan berpotongan apabila diperpanjang. Garis Horizontal dan Garis Vertikal Gambar tersebut menunjukkan sebuah neraca dengan bagianbagiannya. Perhatikan bagian tiang penyangga dan bagian lengan yang berada di atasnya. Kedudukan bagian tiang dan lengan tersebut menggambarkan garis horizontal dan vertikal. Bagian lengan menunjukkan kedudukan garis horizontal, sedangkan tiang penyangga menunjukkan kedudukan garis vertikal. Arah garis horizontal mendatar, sedangkan garis vertikal tegak lurus dengan garis horizontal. 2. sifat-Sifat Garis Sejajar Pada gambar di bawah ini, melalui dua buah titik yaitu titik A dan titik B dapat dibuat tepat satu garis, yaitu garis m. Selanjutnya, apabila dari titik C di luar garis m dibuat garis sejajar garis m yang melalui titik tersebut, ternyata hanya dapat dibuat tepat satu garis, yaitu garis n. Berdasarkan uraian di atas, secara umum diperoleh sifat sebagai berikut. Melalui satu titik di luar sebuah garis dapat ditarik tepat satu garis yang sejajar dengan garis itu. Selanjutnya perhatikan gambar di bawah ini. Pada gambar di bawah diketahui garis m sejajar dengan garis n m // n dan garis l memotong garis m di titik P. Apabila garis l yang memotong garis m di titik P diperpanjang maka garis l akan memotong garis n di satu titik, yaitu titik Q. Jika sebuah garis memotong salah satu dari dua garis yang sejajar maka garis itu juga akan memotong garis yang kedua. Sekarang, perhatikan Gambar di bawah ini. Pada gambar tersebut, mula-mula diketahui garis k sejajar dengan garis l dan garis m. Tampak bahwa garis k sejajar dengan garis l atau dapat ditulis k // l dan garis k sejajar dengan garis m, ditulis k // m. Karena k // l dan k // m, maka l // m. Hal ini berarti bahwa garis l sejajar dengan garis m. Jika sebuah garis sejajar dengan dua garis lainnya maka kedua garis itu sejajar pula satu sama lain. 2. Perbandingan Segmen Garis Pada dasarnya materi perbandingan segmen garis hampir sama dengan perbandingan senilai atau seharga yang sudah diulas pada Materi matematika kelas VII Semester Ganjil pada postingan yang berjudul Cara Menghitung Perbandingan Seharga senilai. Oke langsung saja ke materi, silahkan lihat gambar di bawah ini. Sebuah garis dapat dibagi menjadi n bagian yang sama panjang atau dengan perbandingan tertentu. Perhatikan Gambar di bawah ini. Gambar tersebut menunjukkan garis PQ dibagi menjadi 5 bagian yang sama panjang, sehingga PK = KL = LM = MN = NQ. Jika dari titik K, L, M, N, dan Q ditarik garis vertikal ke bawah, sedemikian sehingga PA = AB = BC = CD = DE maka diperoleh sebagai berikut. PM MQ = 3 2 PC CE = 3 2 maka PM MQ = PC CE QN NP = 1 4 ED DP = 1 4 maka, QN NP = ED DP PL PQ = 2 5 PB PE = 2 5 maka PL PQ = PB PE QL QP = 3 5 EB EP = 3 5 maka QL QP = EB EP Berdasarkan uraian tersebut, secara umum dapat disimpulkan sebagai berikut. Pada Δ ABC di bawah ini berlaku perbandingan sebagai berikut. AD DB = AE EC atau AD/ DB = AE / EC AD AB = AE AC atau AD / AB = AE / AC BD DA = CE EA atau BD / DA = CE / EA BD BA = CE CA atau BD / BA = CE / CA AD AB = AE AC = DE BC atau AD / AB = AE / AC = DE / BC Contoh soal tentang perbandingan garis Pada gambar di atas, diketahui QR // TS. Jika PR = 15 cm, PQ = 12 cm, dan PS = 10 cm, tentukan panjang PT; perbandingan panjang TS dan QR. Penyelesaian PS/PR = PT/PQ 10 cm/15 cm = PT / 12 cm PT = 10x 12/15 cm PT = 120 cm/15 PT = 8 cm Jadi, panjang PT = 8 cm. PT / PQ = TS/QR 8/12 = TS/QR 2/3 = TS/QR Jadi, TS QR = 2 3. Demikian postingan materi dan contoh soal perbandingan segmen garis. Untuk memantapkan pemahaman kamu tentang perbandingan segmen garis silahkan baca postingan Tips dan Trik Cara Mengerjakan Soal Perbandingan Segitiga yang pada dasarnya menggunakan konsep perbandingan segmen garis dan perbandingan seharga atau senilai. Pengertian Sudut dan Besar Sudut 3. Pengertian Sudut Agar kalian dapat memahami pengertian sudut, coba amati ujung sebuah meja, pojok sebuah pintu, atau jendela, berbentuk apakah ujung tersebut? Ujung sebuah meja atau pojok pintu dan jendela adalah salah satu contoh sudut. Perhatikan Gambar di bawah ini. Suatu sudut dapat dibentuk dari suatu sinar yang diputar pada pangkal sinar. Sudut ABC pada gambar di samping adalah sudut yang dibentuk BC yang diputar dengan pusat B sehingga BC berputar sampai BA . Ruas garis BA dan BC disebut kaki sudut, sedangkan titik pertemuan kaki-kaki sudut itu disebut titik sudut. Daerah yang dibatasi oleh kaki-kaki sudut, yaitu daerah ABC disebut daerah sudut. Untuk selanjutnya, daerah sudut ABC disebut besar sudut ABC. Sudut dinotasikan dengan “ ° ”. Sudut pada Gambar di atas dapat diberi nama a. sudut ABC atau ∠ABC; b. sudut CBA atau ∠CBA; c. sudut B atau ∠B. Dengan demikian, dapat dikatakan bahwa sudut adalah daerah yang dibentuk oleh pertemuan antara dua buah sinar atau dua buah garis lurus. 4. Besar Sudut Besar suatu sudut dapat dinyatakan dalam satuan derajat °, menit , dan detik “. Perhatikan jarum jam pada sebuah jam dinding. Untuk menunjukkan waktu 1 jam, maka jarum menit harus berputar 1 putaran penuh sebanyak 60 kali, atau dapat ditulis 1 jam = 60 menit. Adapun untuk menunjukkan waktu 1 menit, jarum detik harus berputar 1 putaran penuh sebanyak 60 kali, atau dapat ditulis 1 menit = 60 detik. Hal ini juga berlaku untuk satuan sudut. Hubungan antara derajat °, menit , dan detik “ dapat dituliskan sebagai berikut. 1° = 60’ atau 1’ = 1/60° 1’ = 60” atau 1” = 1/60’ 1° = 60 x 60” = atau 1’ = 1/ Contoh soal tentang besarnya sudut Tentukan kesamaan besar sudut berikut. 5o ° = …’ 8’ = …” 45,6o ° = …o …’ 48°48’ = …o Penyelesaian Karena 1° = 60’ maka 5° = 5 x 60’ = 300’ Karena 1’ = 60” maka 8’ = 8 x 60” = 480” 45,6° = 45° + 0,6° = 45° + 0,6 x 60’ 45,6° = 45° + 36’ 45,6° = 45°36’ 4. 48°48’ = 48° + 48’ 48°48’ = 48° + 48/60° 48°48’ = 48° + 0,8° 48°48’ = 48,8° 5. Jenis-Jenis Sudut Secara umum, kita mengenal ada lima jenis sudut, adapun kelima jenis sudut tersebut adalah sebagai berikut sudut siku-siku; sudut lurus; sudut lancip; sudut tumpul; sudut refleks. Perhatikan sudut yang dibentuk oleh kedua jarum jam jika jam menunjukkan pukul Ternyata pada pukul kedua jarum jam membentuk sudut siku-siku. Sudut siku-siku adalah sudut yang besarnya 90°. Sudut siku-siku dinotasikan dengan “ ” atau “ ”. Sekarang, putarlah jarum jam pendek ke angka 6, dengan jarum jam panjang tetap di angka 12. Tampak bahwa kedua jarum jam membentuk sudut lurus. Jika kalian perhatikan, sudut lurus dapat dibentuk dari dua buah sudut siku-siku yang berimpit. Sudut lurus adalah sudut yang besarnya 180°. Selain sudut siku-siku dan sudut lurus, masih terdapat sudut yang besarnya antara 0° dan 90°, antara 90° dan 180°, serta lebih dari 180°. Sudut yang besarnya antara 0° dan 90° disebut sudut lancip. Sudut yang besarnya antara 90° dan 180° disebut sudut tumpul. Sudut yang besarnya lebih dari 180° dan kurang dari 360° disebut sudut refleks. Antar sudut Jika Dua Garis Sejajar Dipotong Oleh Garis Lain Sebelumnya sudah membahas materi hubungan antar sudut, akan tetapi sekarang juga tetap membahas materi tentang hubungan antar sudut. Pembahasankali ini lebih memfokuskan bagaimana hubungan antar sudut jika sudut-sudut tersebut sehadap dan berseberangan dan bagaiman jika sudut-sudut tersebut luar sepihak dan dalam sepihak. Oke, silahkan anda pelajari materinya kemudian pelajaricara menyelesaikan soal-soalnya yang berkaitan dengan materi ini. Sudut-Sudut Sehadap dan Berseberangan Pada gambar di atas, garis m // n dan dipotong oleh garis l. Titik potong garis l terhadap garis m dan nberturut-turut di titik P dan titik Q. Pada gambar diatas, tampak bahwa sudut P2 dan sudut Q2 menghadap arah yang sama. Demikian juga sudut P1 dan sudut Q1, sudut P3 dan sudut Q3, serta sudut P4 dan sudut Q4. Sudut-sudut yang demikian dinamakan sudut-sudut sehadap. Sudut sehadap besarnya sama. Jika dua buah garis sejajar dipotong oleh garis lain maka akan terbentuk empat pasang sudut sehadap yang besarnya sama. Jadi, dapat dituliskan ∠P1 sehadap dengan ∠Q1 dan ∠P1 = ∠Q1; ∠P2 sehadap dengan ∠Q2 dan ∠P2 = ∠Q2; ∠P3 sehadap dengan ∠Q3 dan∠P3 = ∠Q3; ∠P4 sehadap dengan ∠Q4 dan ∠P4 = ∠Q4. Contoh soal dan Pembahasan tentang Sudut-Sudut Sehadap Perhatikan gambar di atas. a. Sebutkan pasangan sudut-sudut sehadap. b. Jika besar ∠K1 = 102°, tentukan besar ∠L1; ∠K2; ∠L2. Penyelesaian a. Berdasarkan gambar di samping diperoleh ∠K1 sehadap dengan ∠L1 ∠K2 sehadap dengan ∠L2 ∠K3 sehadap dengan ∠L3 ∠K4 sehadap dengan ∠L4 b. Jika∠K1 = 102° maka ∠L1 = ∠K1 sehadap = 102° ∠K2 = 180° – ∠K1 berpelurus = ∠K2 = 180° – 102° = ∠K2 = 78° ∠L2 = ∠K2 sehadap = ∠L2 = 78o Perhatikan di atas. Pada gambar tersebut besar ∠P3 =∠Q1 dan ∠P4 = sudut Q2. Pasangan sudut P3 dan sudut 1, serta sudut P4 dan sudut Q2 disebut sudut-sudut dalam berseberangan. Jika dua buah garis sejajar dipotong oleh garis lain, besar sudut-sudut dalam berseberangan yang terbentuk adalah sama besar. Sekarang perhatikan pasangan sudut P1 dan sudut Q3, serta sudut P2 dan sudut Q4. Pasangan sudut tersebut adalah sudut-sudut luar berseberangan, di mana sudut P1 = sudut Q3 dan sudut P2 = sudut Q4. Jika dua buah garis sejajar dipotong oleh garis lain maka besar sudut-sudut luar berseberangan yang terbentuk adalah sama besar. Contoh soal dan Pembahasan tentang Sudut-Sudut Berseberangan Perhatikan gambar di atas. a. Sebutkan pasangan sudut- sudut dalam berseberangan. b. Jika ∠A1 = 75°, tentukan besar i ∠A2; ii ∠A3; iii ∠B4. Penyelesaian a. Pada gambar di atas diperoleh ∠A1 dalam berseberangan dengan ∠B3; ∠A2 dalam berseberangan dengan ∠B4. b. Jika ∠A1 = 75° maka i ∠A2 = 180°– sudut A1 berpelurus ∠A2 = 180° – 75° ∠A2 = 105° ii ∠A3 = ∠A1 bertolak belakang = 75° iii ∠B4 = ∠A2 dalam berseberangan = 105° Sudut-Sudut Dalam Sepihak dan Luar Sepihak Perhatikan Gambar di atas. Pada gambar tersebut garis m // n dipotong oleh garis l di titik P dan Q. Perhatikan sudut P3 dan sudut Q2. Kedua sudut tersebut terletak di dalam garis m dan n serta terhadap garis l keduanya terletak di sebelah kanan sepihak. Pasangan sudut tersebut dinamakan sudut-sudut dalam sepihak. Dengan demikian diperoleh ∠P3 dalam sepihak dengan ∠Q2; ∠P4 dalam sepihak dengan ∠Q1. Sebelumnya telah sudah posting bahwa ∠P3 = ∠Q3 sehadap dan ∠P2 = ∠Q2 sehadap. Padahal ∠2 = 180° – ∠P3 berpelurus, sehingga ∠Q2 = ∠P2 = 180° – ∠P3 atau ∠P3 + ∠Q2 = 180° Tampak bahwa jumlah ∠P3 dan ∠Q2 adalah 180°. Jika dua buah garis sejajar dipotong oleh garis lain maka jumlah sudut-sudut dalam sepihak adalah 180°. Dengan cara yang sama, dapat dibuktikan bahwa ∠P4 + ∠Q1 = 180°. Contoh Soal dan Pembahasan Tentang Sudut-Sudut Dalam Sepihak Pada Gambar di atas, garis p // q dan garis r memotong garis p dan q di titik R dan S. a. Tentukan pasangan sudut-sudut dalam sepihak. b. Jika ∠S1 = 120°, tentukan ∠R2 dan ∠R3. Penyelesaian a. Berdasarkan gambar di samping diperoleh ∠R2 dalam sepihak dengan ∠S1; ∠R3 dalam sepihak dengan ∠S4. b. Jika ∠S1 = 120° maka ∠R2 + ∠S1 = 180° dalam sepihak ∠R2 = 180° – ∠S1 ∠R2 = 180° – 120° ∠R2 = 60° ∠R3 =∠S1 dalam berseberangan ∠R3 = 120° Perhatikan kembali ∠P1 dengan ∠Q4 dan ∠P2 dengan ∠Q3 pada Gambar di atas. Pasangan sudut tersebut disebut sudut-sudut luar sepihak. Akan kita buktikan bahwa ∠P1 + ∠Q4 = 180°. ∠ P1 + ∠ P4 = 180o berpelurus Padahal ∠ P4 = ∠ Q4 sehadap. Terbukti bahwa ∠ P1 + ∠ Q4 = 180°. Jika dua buah garis sejajar dipotong oleh garis lain maka jumlah sudut-sudut luar sepihak adalah 180°. Antarsudut Pasangan Sudut yang Saling Berpelurus Bersuplemen Pada Gambar di atas, garis AB merupakan garis lurus, sehingga besar ∠AOB = 180°. Pada garis AB, dari titik O dibuat garis melalui C, sehingga terbentuk sudut AOC dan sudut BOC. Sudut AOC merupakan pelurus atau suplemen dari sudut BOC. Demikianpula sebaliknya, sudut BOC merupakan pelurus atau suplemen sudut AOC, sehingga diperoleh sudut AOC + sudut BOC = sudut AOB a° + b° = 180° atau dapat ditulis a° = 180° – b° atau b° = 180° – a°. Dari uraian di atas dapat disimpulkan sebagai berikut. Jumlah dua sudut yang saling berpelurus bersuplemen adalah 180°. Sudut yang satu merupakan pelurus dari sudut yang lain. Contoh soal Pasangan Sudut yang Saling Berpelurus Bersuplemen Perhatikan gambar di atas. Hitunglah nilai a° dan tentukan pelurus dari sudut a°. Penyelesaian Berdasarkan gambar diperoleh bahwa 3a° + 2a° = 180° 5a° = 180° a° = 180°/5 a° = 36 Pelurus sudut a° = 180° – 36° = 144°. Pasangan Sudut yang Saling Berpenyiku Berkomplemen Pada gambar di atas terlihat sudut PQR merupakan sudut siku-siku, sehingga besar sudut PQR = 90°. Jika pada sudut PQR ditarik garis dari titik sudut Q, akan terbentuk dua sudut, yaitu sudut PQS dan sudut RQS. Dalam hal inidikatakan bahwa sudut PQS merupakan penyiku komplemen dari sudut RQS, demikian pula sebaliknya. Sehingga diperoleh sudut PQS + sudut RQS = sudut PQR x° + y° = 90°, dengan x° = 90° – y° dan y° = 90° – x°. Dari uraian di atas dapat disimpulkan sebagai berikut. Jumlah dua sudut yang saling berpenyiku berkomplemen adalah 90°. Sudut yang satu merupakan penyiku dari sudut yang lain. Contoh Soal Tentang Pasangan Sudut yang Saling Berpenyiku Berkomplemen Perhatikan gambar di atas. a. Hitunglah nilai x°. b. Berapakah penyiku sudut x°? c. Berapakah pelurus dari penyiku x°? Penyelesaian a. x° + 3 x° = 90° 4 x° = 90° x° = 22,5° b. penyiku dari x° = 90° – 22,5° = 67,5° c. pelurus dari penyiku x° = 180° – 67,5° = 112,5° Pasangan Sudut yang Saling Bertolak Belakang Pada gambar di atas, garis KM dan LN saling berpotongan di titik O. Dua sudut yang letaknya saling membelakangi disebut dua sudut yang saling bertolak belakang, sehingga diperoleh sudut KON bertolak belakang dengan sudut LOM; dan sudut NOMbertolak belakang dengan sudut KOL. Bagaimana besar sudut yang saling bertolak belakang? Agar dapat menjawabnya, perhatikan uraian berikut. sudut KOL + sudut LOM = 180° berpelurus sudut KOL = 180° – sudut LOM ……………………….. i sudut NOM + sudut MOL = 180° berpelurus sudut NOM = 180° – sudut MOL ………………………… ii Dari persamaan i dan ii diperoleh sudut KOL = sudut NOM = 180° – sudut LOM Jadi, besar sudut KOL = besar sudut NOM. Dengan cara yang sama, maka dapat membuktikan bahwa sudut KON = sudut LOM. Dari uraian di atas dapat disimpulkan sebagai berikut. Jika dua garis berpotongan maka dua sudut yang letaknya saling membelakangi titik potongnya disebut dua sudut yang bertolak belakang. Dua sudut yang saling bertolak belakang adalah sama besar. Contoh soal tentang Pasangan Sudut yang Saling Bertolak Belakang Perhatikan Gambar di atas. Diketahui besar sudut SOP = 45°. Tentukan besar a. sudut ROQ; b. sudut SOR; c. sudut POQ. Penyelesaian Diketahui sudutSOP = 45°. a. sudut ROQ = sudut SOP bertolak belakang P = 45° b. sudut SOP +sudut SOR = 180° berpelurus sudut SOR = 180° – sudut SOP = 180° – 45° = 135° c. sudut POQ = sudut SOR bertolak belakang = 135°

garis l dan garis m adalah pasangan garis yang saling